2(x^2-12x-4)1/2-3=15

Simple and best practice solution for 2(x^2-12x-4)1/2-3=15 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(x^2-12x-4)1/2-3=15 equation:



2(x^2-12x-4)1/2-3=15
We move all terms to the left:
2(x^2-12x-4)1/2-3-(15)=0
We add all the numbers together, and all the variables
2(x^2-12x-4)1/2-18=0
We multiply all the terms by the denominator
2(x^2-12x-4)1-18*2=0
We add all the numbers together, and all the variables
2(x^2-12x-4)1-36=0
We multiply parentheses
2x^2-24x-8-36=0
We add all the numbers together, and all the variables
2x^2-24x-44=0
a = 2; b = -24; c = -44;
Δ = b2-4ac
Δ = -242-4·2·(-44)
Δ = 928
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{928}=\sqrt{16*58}=\sqrt{16}*\sqrt{58}=4\sqrt{58}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-4\sqrt{58}}{2*2}=\frac{24-4\sqrt{58}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+4\sqrt{58}}{2*2}=\frac{24+4\sqrt{58}}{4} $

See similar equations:

| 7x=12+13 | | 3x+3(-2-3)=-8-4x | | 63÷a=9 | | 0=-16t^2+84 | | 5(a-3)=2(-a+6) | | 3(4-x)-2(x-1)=x+2012 | | 5(x^2+5x+136)^(2/3)=50 | | 5/4=4c | | x=-16(64) | | 5u-2u=3 | | 2(y-6)=3y+-2-y | | x+7=2x+19+80 | | 11=18x+5 | | 65​ k=−20 | | z^2+4z-8=0 | | 3(p=2)=-30 | | -12/5x+26/5=6 | | 6-10(5y+7)=150 | | 4x+2=0x+3 | | 6x+1+4x=21 | | 19-9x=22 | | x-6=2x-8=10 | | 0x=70x+60 | | 0x/10=7x+6 | | 11x-2/3=6/7 | | 11=3+v/2 | | 5x/10(7-7)=7x+6 | | a*3+8=12 | | 9x-62=5x-2 | | 7x/11+11=5 | | 5x-12=-5 | | 25x+10=32x-18 |

Equations solver categories